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A Wideband, Low Profile, Shorted Top Hat
Monocone Antenna

Daniel W. Aten, Member, IEEE, and Randy L. Haupt, Fellow, IEEE

Abstract—A new, innovative, wideband antenna design which is
short compared to wavelength and has an omni-directional radi-
ation pattern that is theta polarized is investigated. The antenna
design is a shorted top hat monocone that is tall and has
a 3:1 bandwidth. The bandwidth of the antenna was optimized by
a genetic algorithm. To verify the results, a prototype was built.
Modeled and measured results compared well. A link budget anal-
ysis was also performed to verify that the design performed as well
or better than a monopole.

Index Terms—Antenna measurements, broadband antennas,
communication system performance, communication systems,
electrically small antennas, monopole antennas.

I. INTRODUCTION

M ANY communication and sensing systems use verti-
cally polarized, omnidirectional antennas. Platforms,

such as unmanned aerial vehicles (UAVs), have additional
weight and low profile constraints on the antennas. If the
antenna also has a very wide bandwidth, then it can service
several different frequency bands. Our goal is to build a short,
vertically polarized, omni-directional, light-weight antenna
that has a very wide bandwidth. We decided to use a monocone
antenna as a starting point, then make changes and optimize the
design to meet our goals.
Several relevant designs have appeared in the literature. The

monopolar wire patch [1] and monopolar plate patch [2] are
and tall respectively, but have very narrow band-

width. The monopolar patch antenna [3] is tall and has
a very wide bandwidth. The super wideband monopolar patch
[4] is similar to [3] but with an increased bandwidth. In [5] and
[6] a sleeve monopole is presented. A wideband bi-cone design
is presented in [7]. All these designs use shorting pins to the
ground plane in order to reduce the lowest operating frequency.
In a webinar session, [8], many wideband designs were pre-
sented. Of interest were planar designs like a two dimensional
cone antenna, which looks like a bow tie, or other shapes such
as circles or ellipses used as both ends of a dipole. These designs
have a very wide bandwidth; however, the antenna height is on
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Fig. 1. An optimized design on an infinite ground plane without shorting pins.

the order of at the lowest frequency. In [9] and [10] a planar
disk and elliptical monopole were investigated. These papers
showed how the shape of the monopole, ranging from a perfect
circle to an ellipse, changed the antenna input impedance and ra-
diation characteristics. These designs slightly lowered the oper-
ating frequency compared to height, but still maintained a wide
bandwidth. Reference [11] presented multiple planar monopole
designs. The design with the best bandwidth had a feed shaped
like a triangle. In [12], another planar monopole design showed
the monopole was composed of a semi circle at the base with
other stacked geometries on top. A common theme in the wide-
band antennas was a smooth tapered feed leading into a wide
structure. These designs could be planar or volumes of revolu-
tion.
This paper presents the design of a broadband, vertically

polarized, omni-directional monocone antenna that is only
tall. We call it the shorted top hat moncone antenna

(STHMA). The next section explains the basic design of the
antenna along with the numerical models and optimization
process. The optimized design was built and tested. Experi-
mental results compared well with the numerical predictions.
This design was mounted on an airplane and a link budget was
tested at 900 MHz and 2.4 GHz. Link budget results for the
STHMA were compared with narrowband monopole antenna
performance at 900 MHz and 2.4 GHz. Overall, the resulting
antenna was only tall at the lowest frequency and had a
bandwidth of 100%.

II. ANTENNA DESIGN

In order to reduce the height of the monocone antenna, a top
hat was added [13]. Fig. 1 is a Microwave Studio [14] (MWS)
model of a monocone antenna with a top hat over an infinite
ground plane. A plot of is shown in Fig. 3 (dashed line).
To further reduce the height and increase the bandwidth,

shorting pins were inserted between the top and the infinite
ground plane (Fig. 2). The design in Fig. 2 was optimized
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Fig. 2. An optimized design on an infinite ground plane modeled in MWS.

Fig. 3. of the initial antenna design with and without shorting pins.

Fig. 4. Maximum surface current at 1 GHz—Infinite ground plane prototype.

using a genetic algorithm (GA) [15]. The cost function returned
the peak value of across a predefined frequency range.
The overall height of the antenna is 29.3 mm. The antenna
is matched ( dB) from 850 MHz to 2.5 GHz and
is tall at the lowest operating frequency. To understand
the importance of the ground pins, both the optimized design
with and without shorting pins were compared. Fig. 3 is a plot
of (solid line). By adding shorting pins to the structure, a
low frequency resonance is formed at 900 MHz. This second
resonance significantly increased the bandwidth of this design.
Figs. 4 and 5 show the maximum surface current on the antenna
at 1 GHz and 2 GHz respectively when a 1 volt source was
used. The importance of the pins is seen at 1 GHz, Fig. 4, which
shows there is 10.4 (A/m) of surface current present on the pins.
This is almost 5 times more than at 2 GHz where the pins do not
play as significant a role. This explains the resonance forming
when shorting pins are used. The next step is to optimize the
antenna on a finite ground plane.
Placing the antenna on a finite ground plane changes the

matching and pattern characteristics of the antenna, so the

Fig. 5. Maximum surface current at 2 GHz—Infinite ground plane prototype.

Fig. 6. A monopole antenna modeled in FEKO over an infinite ground plane.

Fig. 7. The antenna pattern of a monopole modeled in FEKO over (a) infinite
(b) finite circular (c) finite square ground plane.

antenna must be re-optimized. The size of and shape of the
ground plane significantly impacts the antenna impedance and
pattern. We looked at a circular and square ground plane and
created a model using FEKO (Fig. 6) [16]. Fig. 7(a), (b) and
(c) are the antenna pattern of the monopole modeled over an
infinite ground plane, circular ground plane, and square ground
plane respectively. The square and circular ground planes have
a diameter and edge length of , respectively. The antenna
pattern over an infinite ground plane or a circular ground plane
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Fig. 8. The proposed antenna design showing variables used during optimiza-
tion. Optimized line segment lengths:

and mm.

Fig. 9. A three dimensional view of the STHMA on a square ground plane
modeled in MWS.

Fig. 10. 800 MHz antenna pattern comparison on a square and circular ground
plane.

has no scalloping with respect to . In contrast, the antenna
pattern over a square ground plane has significant scalloping
with respect to . Both the antenna patterns associated with a
finite ground plane have a beam squint away from the ground
plane.
The antenna in Fig. 8 was optimized on a finite circular

ground plane. The antenna height, DF, was set at 1 inch or 25.4
mm. Line segments AC, CD, DE, and EG were then optimized.
The “best” solution had an impedance bandwidth (
dB) from 800 MHz to 2.4 GHz. The antenna is tall at
800 MHz and at 2.4 GHz. The antenna pattern, however,
has slight scalloping due to the pins. Fig. 9 is a picture of the
MWS model of the STHMA.
To reduce the scalloping in the antenna pattern, we switched

to a square ground plane which had sides the same length as the

Fig. 11. 2.4 GHz antenna pattern comparison on a square and circular ground
plane.

Fig. 12. Calculated comparison using a square ground plane and a circular
ground plane.

diameter of the optimized solution. The corners of the ground
plane pointed at , and 315 while the pins
are at , and 270 (see Fig. 9). Figs. 10 and 11
compare the azimuth cuts of the antenna patterns when square
and circular ground planes are used at 800 MHz and 2.4 GHz
respectively. At 800 MHz the ground plane shape has no effect.
At 2.4 GHz the square ground plane reduces the scalloping by
0.1 dB.
The square ground plane also improved . Fig. 12 is a

plot comparing of a square ground plane to of a cir-
cular ground plane. Although they both are considered matched
across the same bandwidth, the square ground plane has a lower

across the entire band. As a result, we built a prototype of
the STHMA over a square ground plane.
The calculated maximum gain of the STHMA is shown in

Fig. 13. The gain increases starting from 1.7 dBi at 800 MHz to
a max of 9 dBi at 2.4 GHz.

III. EXPERIMENTAL RESULTS

An experimental model was built (Fig. 14) and tested then
compared with computed results. Fig. 15 is calculated in
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Fig. 13. Maximum gain (dBi) versus frequency of the STHMA.

Fig. 14. A prototype of the STHMA.

Fig. 15. Comparison of of calculated and measured antenna.

MWS compared to measured results. The calculated and mea-
sured results are very similar. The antenna has an less than

dB from 800 MHz to 2.4 GHz, which is a 3:1 bandwidth.
The antenna gains were compared to a resonant monopole at

800 MHz and 2.3 GHz over a finite ground plane the same size
as the final design. Figs. 16 and 17 are comparisons of the gain
of STHMAwith a resonant monopole at 800MHz and 2.3 GHz,
respectively. The antenna patterns were taken over
degrees and and 45 degrees. As frequency increases, the
antenna pattern of both the monopole and STHMA squint away
from the ground plane.

Fig. 16. STHMA gain (dBi) at 800 MHz compared to the gain of a resonant
monopole (800 MHz) at and 45 , .

Fig. 17. STHMA gain (dBi) at 2.3 GHz compared to the gain of a resonant
monopole (2.3 GHz) at and 45 , .

The monopole antenna and STHMA pattern have similar
shapes. Figs. 18 and 19 are three dimensional views of the
STHMA radiation pattern at 800 MHz and 2.4 GHz, respec-
tively. As frequency increases, the antenna pattern squints
further away from the ground plane.
Antenna radiation patterns were taken in an anechoic

chamber. Fig. 20 compares the calculated and measured 2D
radiation patterns at 1 GHz and 2.4 GHz. Fig. 20(a) and (b)
are cuts of the radiation pattern at . The antenna is
omni-directional with some scalloping. Figs. 20(c) and (d)
show radiation pattern cuts at and Fig. 20(e) and
(f) show radiation pattern cuts at . In all cases, the
measured results compare very well to the simulated results.

IV. LINK TESTING

To verify that the STHMA performs, a link budget test was
made to compare the antenna design to monopoles at 900 MHz
and 2.4 GHz. During the test, there was a ground station that
transmitted to an air station. The air station was on a Cherokee
airplane, which had the STHMAantennamounted inside a fiber-
glass cover on the underside of the wing (Fig. 21). The airplane
had the STHMA, laptop, 900MHz RFmodem [17], 2.4 GHz RF
modem [18], and GPS receiver. The ground station consisted of
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Fig. 18. 3D radiation pattern of STHMA at 800 MHz.

Fig. 19. 3D radiation pattern of STHMA at 2.4 GHz.

a laptop, 900 MHz RF modem, 2.4 GHz RF modem, GPS re-
ceiver, STHMA, 900MHz 2.1 dBi gain monopole, and 2.4 GHz
2.1 dBi gain monopole. The RFmodems were chosen since they
covered the lower and upper bands of the antenna’s range at a
reasonable cost.
Four different link tests were performed with the airplane

flying north to south. The first test was at 900 MHz where a
resonant monopole antenna was used at the ground station. The
second test was at 900 MHz where the STHMA was used at
the ground station. The third test was at 2.4 GHz where a res-
onant monopole antenna was used at the ground station. The
fourth test was at 2.4 GHz with the STHMA antenna used at the
ground station.
Figs. 22 through 25 show the power level received at the air

station during the 900MHz and 2.4 GHz testing. The plot scales
in the x and y directions are different: x is between 0 and 4 miles
while y is between 0 and 12 miles. This scale difference mag-
nifies the line squiggle due to the airplane motion induced by
the winds. If the plots had equal axes, the paths would look very
straight; however, individual paths would be hard to distinguish.
The “X” indicated the position of the ground location.
Fig. 22 is the power level received in the airplane when

a 900 MHz monopole antenna was used to transmit from
the ground station. Fig. 23 is the power level received in the
airplane when the STHMA was used to transmit at 900 MHz
from the ground station. Comparing Figs. 22 and 23 it is seen
that the wideband antenna has a larger coverage area than that
of a 900 MHz whip.
Fig. 24 is the power level received in the airplane when

a 2.4 GHz monopole antenna was used to transmit from the

Fig. 20. STHMA normalized 2D radiation pattern measurements and com-
parison to MWS. (a) 1.0 GHz, 0:360, 90, (b) 2.4 GHz, 0:360, 90,
(c) 1.0 GHz, 0, 0:360, (d) 2.4 GHz, 0, 0:360, (e) 1.0 GHz, 45, 0:360,
(f) 2.4 GHz, 45, 0:360.

Fig. 21. STHMA mounted on the belly of a Cherokee Airplane.

ground station. Fig. 25 is the power level received in the air-
plane when the STHMA was used to transmit at 2.4 GHz from
the ground station. Comparing Figs. 24 and 25 shows that the
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Fig. 22. Power level received when a 900 MHz, 2.1 dBi monopole is used at
the ground station indicated by an “X”.

Fig. 23. Power level received at 900 MHz when the STHMA is used at the
ground station indicated by an “X”.

Fig. 24. Power level received when a 2.4 GHz, 2.1 dBi monopole is used at the
ground station indicated by an “X”.

STHMA has a similar although very slightly reduced coverage
area than that of a 2.4 GHz whip.
This test demonstrates that the antenna design performed

equivalent to or better than a monopole antenna at 900 MHz
and 2.4 GHz. Not only did it perform well, but the antenna
design was much shorter compared to wavelength.

Fig. 25. Power level received at 2.4 GHz when the STHMA is used at the
ground station indicated by an ‘X”.

TABLE I
COMPARISON OF LITERATURE AND THE STHMA PERFORMANCE

V. CONCLUSION

We designed a new short, broadband, polarized, antenna
element. The final design of the STHMA was in height,
polarized, and operated from 800 MHz to 2.4 GHz where the
VSWRwas less than 2:1. The antenna can bemounted on afinite
ground plane such as a UAV’s body and cover the same bands
as 12 corresponding monopoles. Not only can it perform as well
or better than the monopoles, but it is also shorter compared to
wavelength across the entire band.
The STHMA height and bandwidth are compared with other

similar antenna designs in Table I. It is seen that the STHMA
has the height of the monopolar wire patch [1] and a bandwidth
comparable to the monopolar patch antenna [3].
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真设计实践相结合，全面系统地讲解了 13.56MHz线圈天线的工作原理、

设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体

操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过

该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹

配电路的原理、设计和调试… 

详情浏览：http://www.edatop.com/peixun/antenna/116.html 
 

我们的课程优势： 

※ 成立于 2004 年，10 多年丰富的行业经验， 

※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求 

※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学 

联系我们： 

※ 易迪拓培训官网：http://www.edatop.com 

※ 微波 EDA 网：http://www.mweda.com 

※ 官方淘宝店：http://shop36920890.taobao.com 

 
 

专注于微波、射频、天线设计人才的培养 

官方网址：http://www.edatop.com 易迪拓培训 
淘宝网店：http://shop36920890.taobao.com 


